Home
Products
About Us
Factory Tour
Quality Control
Contact Us
Request A Quote
Home News

Top5 Smart Water Metering Predictions for 2018 by Rian Sullings

China Shanghai Xunhui Environment Technology Co., Ltd. certification
China Shanghai Xunhui Environment Technology Co., Ltd. certification
I'm Online Chat Now
Company News
Top5 Smart Water Metering Predictions for 2018 by Rian Sullings

Top5 Smart Water Metering Predictions for 2018

latest company news about Top5 Smart Water Metering Predictions for 2018 by Rian Sullings  0

 

This article is my top 5predictions for smart water metering in 2018. This year smart water meteringwill continue to build on the achievements of 2017 and take them to new levels,and new solutions will start to emerge. While these predictions are presentedwith a particular focus on Australia and the Asia-Pacific region, they will allapply globally. Listed below in no particular order are my predictions for2018.

 

Deployments using globalLPWANs will increase >10x

2018 will be, if only onething for smart water metering in terms of technology, the year of the LowPower Wide Area Networks (LPWAN). LPWANs are wireless networks with long range,low power requirements, and low costs. The coverage of these networks has grownexponentially throughout 2017 and will ramp up further in 2018.

 

Globally adopted LPWANtechnologies have entered the smart water metering space as an alternative tothe incumbent single vendor networks where the wireless network, devices, andoften the head-end systems are offered by a single vendor with proprietarytechnology and limited or no interoperability. This creates vendor lock-in andscaling issues. Single-vendor networks typically require the operator to deploya dedicated wireless network as part of a smart water metering project.Globally adopted LPWANs have large ecosystems of device and software vendors,multiple network operators, and are rolled out to address far more IoT usecases and projects than smart water metering such as smart streetlights,parking sensors, and practically any other physical device that you can prefacewith the words ‘smart’ or ‘connected’.

 

Sigfox

Sigfox has been building outits network since 2009 and has been an early mover into the LPWAN space. Sigfoxis tracking towards a target of operating in 60 countries by the end of 2018.As of January 2018, this stands at 36 countries with 727 million people livingwithin a Sigfox coverage area.

 

On the 9th of January ’18Sigfox signed an agreement to provide their technology in China under apartnership with a local aged care technology provider in the presence ofChinese and French Presidents Xi Jinping and Emmanuel Macron. This newsrepresents a major milestone in the expansion of the Sigfox technology into oneof the largest markets in the world for the Internet of Things (IoT).

 

In Australia, the local SigfoxOperator; Thinxtra has been backed by the federal government through the CEFCwith a $10 million commitment. This will contribute to the target of covering95% of the population by the end of 2018 (currently around 75%).

 

NB-IoT

Narrow Band IoT (NB-IoT) is alow power wireless network operated by cellular telecommunication providerssuch as Telstra, Vodafone, and Optus. You can think of it as similar to the 3Gnetwork, only trading the transfer speeds for improved range, penetration, andlower power consumption.

 

Vodafone have been providingcoverage for pilots and tests in Victoria, including smart water meteringprojects, since 2016. Through 2017 coverage was expanded across the MelbourneCBD and Sydney. It is expected that Vodafone announce a nationwide deploymentin Australia this year. Vodafone New Zealand

With Telstra’s announcement ofNB-IoT coverage going live in all major cities in Australia, it is clear thatNB-IoT is going to be a leader in IoT connectivity including smart watermetering. With this move, Telstra has rapidly caught up to the earlier moversand while specific details of the current coverage have not yet been shared, itis expected that the Telstra’s NB-IoT network will be the largest dedicated lowpower network in the country by area of coverage.

 

Optus has also been quietlydeveloping their network and working towards more smart water meter projects.2018 will likely see Optus making more public announcements about its plans forNB-IoT.

 

In late 2017 WaterGroupreleased the first Australian Standard Digital Water Meter with integratedNB-IoT communications (Sigfox and LoRaWAN are also scheduled for release thisyear). Utilities nationwide are working to deploy this next-generation meterinto their networks in 2018.

 

LoRaWAN

LoRaWAN is a standard forLPWAN, providing a framework for anyone from hobbyists and home-gamers throughto global telecommunication providers to build and customise their own network.

 

Australian LoRaWAN networkproviders including NNNCo, Meshed, and GeoWAN are all expanding theirnetworks across the country and consider water utilities to be a key marketvertical. 2018 will see the announcement of the first high profile pilots usingLoRaWAN for smart water metering in Australia.

 

New Zealand’s leadingtelecommunication provider Spark announced thedeployment of a national LoRaWAN network in 2017 and that bymid-2018, 70% of the populationwill be covered. This is gaining traction for remote monitoring applications and willenable pilots of smart water metering in 2018.

 

Blockchain Technologiesto Enter Smart Water Metering

Blockchain is a technologywhere information, such as a financial transaction, are entered into andmaintained within a distributed ledger. This means that rather than only oneparty validating events and storing the records in a central location, these eventsare validated and recorded by multiple parties working together. Theseblockchains use cryptography to ensure that records aren’t maliciously altered.The result is a highly secure system for storing and transferring information.

 

If you haven’t heard ofblockchain or don’t understand its applications, watch this 2 minute video fora high-level overview. It is important to note that blockchain andcryptocurrencies are separate technologies. Not all use cases of blockchain arecryptocurrencies, and not all cryptocurrencies are built on blockchains.

 

Withthe cryptocurrency market gaining more headlines in 2017 through events such asthe Bitcoin price reaching over US$19,600, the underlying blockchaintechnologies are benefiting from the attention and rapidly gaining a widerunderstanding of their potential.

 

Australianenergy technology company Power Ledger is using blockchainand cryptocurrency to enable peer-to-peer energy trading and benefitted fromgovernment support towards an $8M project with the City ofFremantle in 2017. Anotherorganisation;IOTA (although nottechnically using blockchain) offers a decentralised transaction network,dubbed the tangle, and a cryptocurrencysolution for IoT applications. IOTA had a market capitalisation of over US$10billion in early January ’18 which gives some indication of the level ofinterest in the market. These new technologies offer a secure and efficient wayfor IoT systems to autonomously execute transactions. Think of a weather stationautomatically selling its data to interested 3rd parties with revenue feedingback to the owner.

 

Smartwater meters provide data that is of interest for multiple parties; utilities,home owners, insurance companies, maintenance providers, facility managers,government organisations, research foundations, etc., and are also used forbilling purposes. This makes them an interesting platform on which to applyblockchain technologies, especially those aimed at IoT applications.

 

Low Power Satellite Communications Will Debut in Pilots

Similarlyto LPWANs, low power satellite communications offer a way for smart watermeters and other IoT devices to transmit small packets of data with minimalpower consumption. They promise to be incredibly useful in remote areas whereother coverage options don’t exist, or aren’t economically or technicallyachievable. With vast farming land, mining operations, and communities livingin remote areas, many of which operating on limited water supplies, Australiaand other countries around the world have significant assets beyond the reachof the cellular networks.

 

Myriota and Fleetspace are working to bring satellitecommunications to IoT, both of which are launching new nano-satellites thisyear. These nano-satellites are roughly the size of a basketball and actas wireless network gateways providing connectivity from low Earth orbit. IoTdevices will be able to send small packets of data from anywhere in the worldto a network of tiny satellites.

 

A critical performancecriteria for remote monitoring systems is long range wireless communications.Satellite communications offer absolute maximum range, limited only by theconfines of the planet and unlock the potential of IoT for practically anywhereon Earth with a view of the sky.

 

While they may not be asefficient in densely populated areas as terrestrial LPWAN networks, they willbe the only viable option for huge areas of land. For example, while Telstra’swireless networks cover 99% of the Australian population, they only coveraround 1/3 of the geographic area of the country. Most LPWAN gateways rely onEthernet or 3G/4G for backhauling data so while you can add your own LPWANgateways anywhere you like, they must be connected to the internet in one wayor another which presents challenges in some remote areas. Direct device tosatellite systems do not have this issue.

 

Expect to see pilots for lowpower satellite smart water metering to begin during 2018.

 

Interoperability andStandardisation Continue to Improve

One of the biggest challengesin solution design and executing of IoT projects is interoperability. Smartwater metering solutions use a wide range of communication methods, protocols,data formats, file formats, etc. This means many devices and systems are notcompatible, at least not without development work to translate and convertmessages into the required formats.

 

While there are many detailedstandards for water meters in terms of metrology, physical properties, andmaterials, there is currently very little in the way of standardisation of thedata they send and how it is sent. This is in part due to the history ofsingle-vendor solutions where each meter or wireless network vendor has definedthe data type and delivery methods as they prefer (often to suit their ownsoftware), and not necessarily what is best for interoperability with othersystems.

 

The current norm is toundertake custom once-off development work on either the source of the data, orthe receiving systems to achieve interoperability. This is work often solvesthe issue for one project, but is not carried over to the next.

 

Softwareplatforms such as Reekoh help to streamline integration and make once-offinterfacing components reusable for multiple projects and systems. This isachieved through an ever increasing library of plug-ins, gateways, andconverter tools.

 

Utilitiesin Australia are responding to the challenge by collaborating with each otherand with vendors to standardise on globally adopted LPWAN networks supportingmultiple vendors and common application protocols. Utilities will adopt morestandardised LPWAN networks and begin to announce convergence on application protocolsin 2018.

 

Digital Utilities, IoT, and Smart Cities Initiatives DriveIncreased Adoption

Thebusiness cases for smart water metering are constantly maturing towards wideradoption and more projects are moving beyond the pilot stage to scaledroll-outs. This is being accelerated in part by a strong focus on a key themepromoted by the current Australian government; innovation. We are seeing anincrease in specialised individuals and working groups tasked with acceleratingthe successful adoption of new technologies to solve real problems withingovernment and utilities.

 

Thesegroups are focused on developing strategies and roadmaps to foster DigitalUtilities, IoT, and Smart Cities through to proof of concepts and trials andhave helped many organisations to start exploring the potential of smart watermetering and to reach the point of deploying these technologies in the field.

 

During2017 the Australian Government’s Smart Cities and SuburbsProgram was opened to release$50M in grant funding aimed at government organisations such as councils. Round1 has been awarded and enabled IoT and digital utilities projects. The initialprogram indicated that future rounds are a possibility. In addition to federalinitiatives such as this, the majority of the largest water utilities inAustralia have dedicated budgets for innovation and a need to act. Smart watermetering is one of the top priorities, especially now that LPWAN and othertechnologies are removing barriers to entry.

 

Governmentorganisations and utilities will continue to fund and drive new pilots andprojects throughout 2018. This will lead to an increase in all types of smartwater metering projects where a real ROI and benefit to the community can beachieved.

 

Althoughthis article is kept to list of my top 5 predictions for 2018 and thereforwon’t cover every development for the coming year, some others deserve amention. One example is artificial intelligence and machine learning. Thesetechnologies will continue to improve and more projects will commencethroughout this year. AI and ML will ramp up even further once largerquantities of projects and next generation meters are deployed and may start toshow their true potential and reach the top of the list in 2019.

 

What are your predictions for smart watermetering in 2018? Please share your thoughts in the comments.

 

Originalarticle by Rian Sullings

Pub Time : 2018-01-29 13:28:00 >> News list
Contact Details
Shanghai Xunhui Environment Technology Co., Ltd.

Contact Person: Mr. Murphy

Tel: 0086-138 1661 4405

Fax: 86-21-31105302

Send your inquiry directly to us (0 / 3000)